TU3B-04

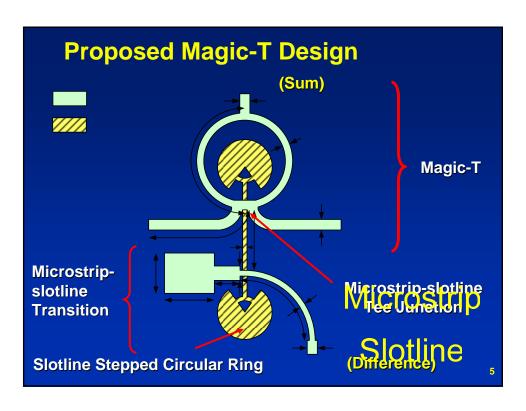
Compact Low-loss Planar Magic-T Using Microstrip-slotline Transitions

Kongpop U-yen, Edward J. Wollack, Samuel H. Moseley, John Papapolymerou and Joy Laskar

¹NASA Goddard Space Flight Center Microwave Instrument Technology Branch Code 555, Greenbelt Rd. Greenbelt, MD, 20771 ²Georgia Electronic Design Center, Georgia Institute of Technology

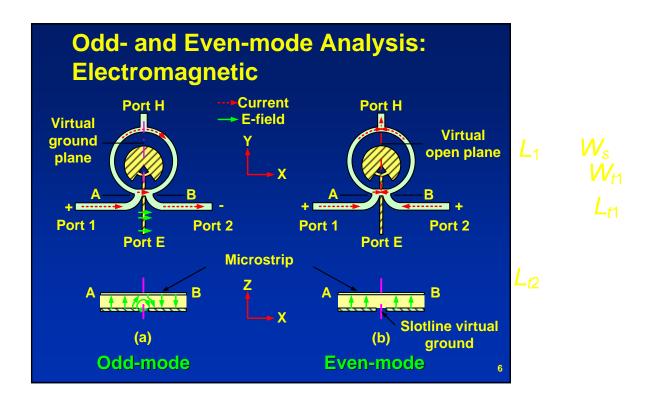
1

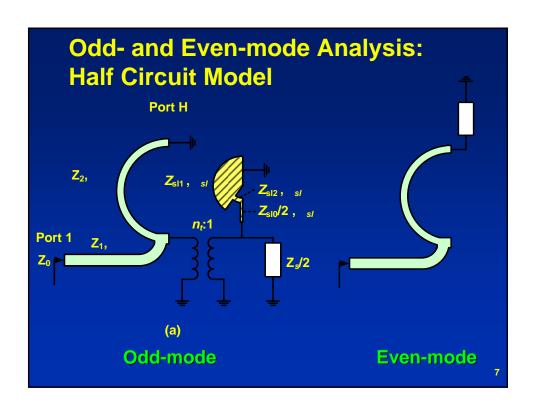
Outline

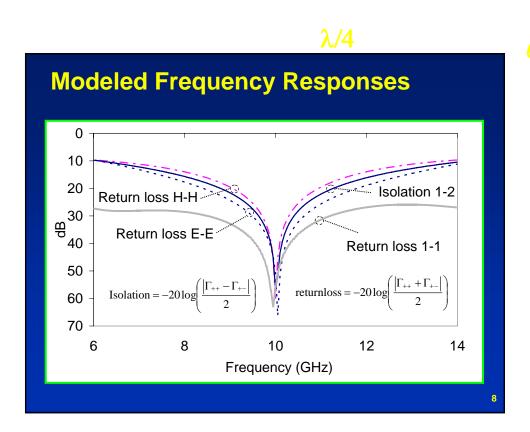

- Motivation
- Proposed Magic-T Design
 - Broadband Design Techniques
 - Microstrip-slotline Transition
 - Radiation Loss Reduction Techniques
- Hardware and Experimental Results
- Conclusion

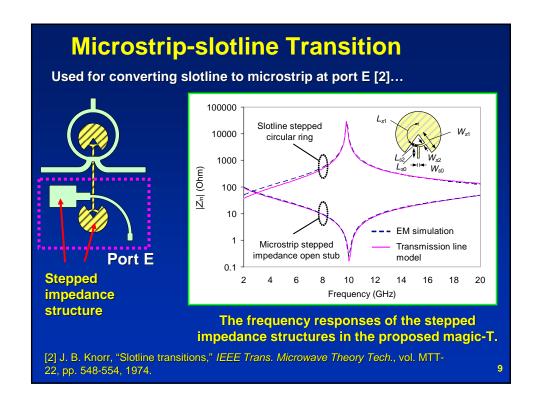
Motivation

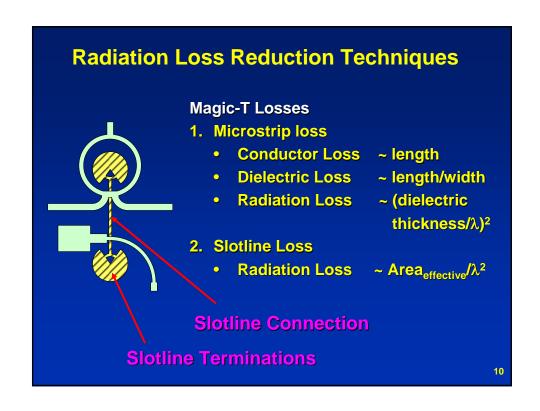
- A practical magic-T should have high sum-todifference port isolation, low phase and amplitude imbalance, as well as low ohmic and insertion loss.
- The structure should be compact, reliable and require the minimal number of fabrication steps to reduce complexity and cost.
- Slotline elements can be incorporated in the magic-T design to realize a broadband response. However, if not carefully designed, they may result in high insertion loss due to radiation.

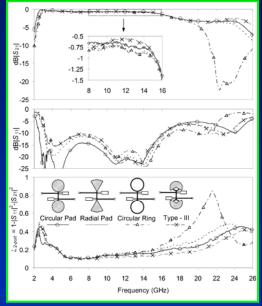

3


Microstrip line and slotline complementary properties Port H Current Microstrip line Quasi-TEM mode - Broadband in-phase power Port 2 Port 1 combiner/divider + <------ Low radiation loss, typically • Slotline **Electric field** Port E - Non TEM and almost transverse electric in nature [1] Broadband out-of-phase power Port 2 Port 1 combiner/divider May have high radiation loss [1] K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, "Microstrip lines and Slotlines," 2nd edition, Artech House, MA, 1996.



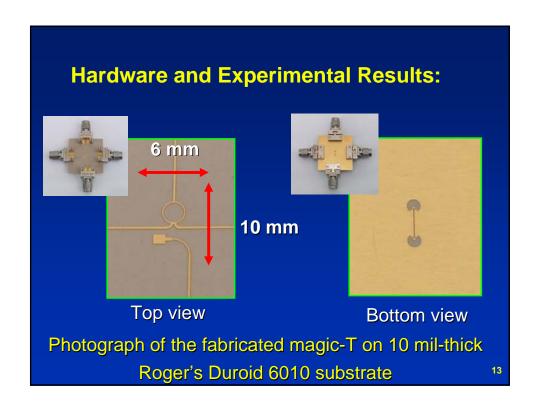

Port F

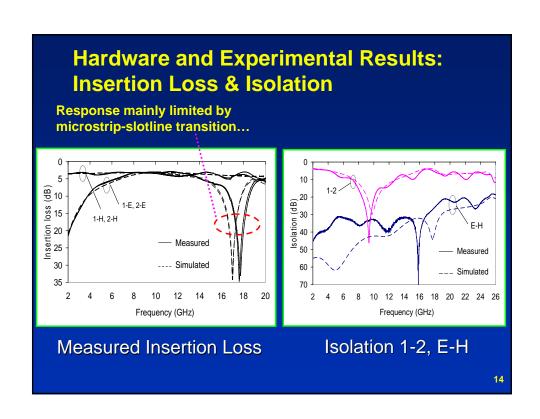

 L_2

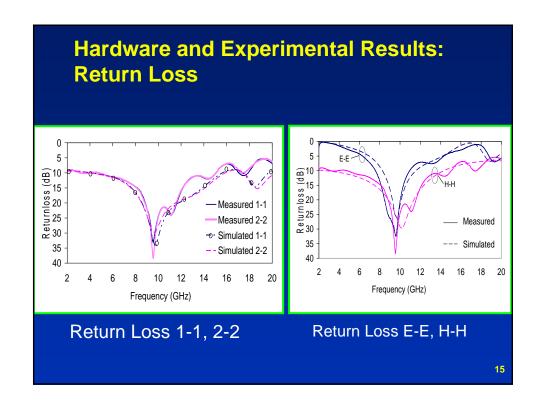


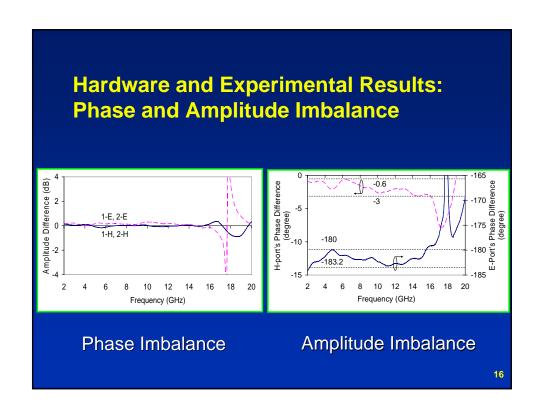
Slotline Radiation Reduction Techniques

- Minimize slotline line length
- Use minimum slotline width and appropriate dielectric thickness
- Use slotline stepped circular ring terminations


[3] K. U-yen et. al. "Slotline stepped circular rings for low-loss microstrip-to-slotline transitions," *IEEE Microwave Wireless Comp. Lett.*, 2007, IEEE Microwave Wireless Components Letters, Vol. 17, No. 2, pp. 100-102.




Slotline termination test using Microstripslotline transitions on the 5-mil thick Roger's LCP substrate


Slotline Stepped Circular Ring

- Reduces the effective electrical length of the slotline terminations.
- Shifts maximum radiation frequency away from the operating band.
- Provides the lowest radiation loss relative to other slotline terminations investigated.

Pros & Cons

Pros

- Compact Geometry
- Simple to design and fabrication
 - Does not require air bridges or vias
- Low in-band insertion loss
- Broadband in-phase combiner
- Low phase and amplitude imbalance

Cons

- Narrowband out-of-phase response
- Narrowband port 1-2 isolation

17

Conclusion

- New compact planar magic-T was proposed
- The magic-T has low in-band insertion loss
- The magic-T has very low phase and amplitude imbalance
- The magic-T is simple to design and fabricate
- Currently investigating means of improving design's bandwidth

Thank you!

10

TABLE I The magic-T circuit design parameters at 10 GHz

Microstrip line section	Slotline section
Z_1 =42.7 Ω , Z_2 =60.33 Ω , $Z_{\rm rl}$ =40 Ω $\theta_{\rm rl}$ =23.3°, $\theta_{\rm rl}$ =46.6°, $Z_{\rm rl}$ =20 Ω	$ \begin{array}{c} Z_{\rm s} = 72.8 \; \Omega, \; Z_{\rm s0} = 72.8 \; \Omega, \; Z_{\rm s12} = 72.8 \; \Omega, \\ \theta_{\rm s0} = 13.57^{\circ}, \; \theta_{\rm s12} = 6.2^{\circ}, \; Z_{\rm s11} = 163.4 \; \Omega, \\ \theta_{\rm s1} = 34.95^{\circ}, \; \theta_{\rm s} = 113.3^{\circ} \end{array} $

TABLE II The physical parameters of the compact magic-T in millimeters

Microstirp line section	Slotline section
L_1 =2.62, W_1 =0.26, L_2 =1.83,	L_s =1.92, W_s =0.10, L_{s0} =0.58,
W_2 =0.14, L_i =2.80, W_i =0.16,	W_{s0} =0.10, L_{s1} =0.23, W_{s1} =0.1,
L_{t1} =0.68, W_{t1} =0.37, L_{t2} =1.30,	L_{s2} =0.91, W_{s2} =0.71
W_{p} =1.05	